## Mate.polimi.it

**LIST OF PUBLICATIONS**
**[updated: May 2013]**
[1] A. Remuzzi, B.M. Brenner, V. Pata, G. Tebaldo, R. Mariano, A. Belloro & G. Remuzzi,

*Three-*
*dimensional reconstructed glomerular capillary network: blood ﬂow distribution and local ﬁltration*, American Journal

of Physiology

**263 **(1992), F562–F572

[2] A. Remuzzi, P. Ruggenenti, L. Mosconi, V. Pata, G. Viberti & G. Remuzzi,

*Eﬀect of low-dose Enalapril*
*on glomerular size-selectivity in human diabetic nephropathy*, Journal of Nephrology

**6 **(1993), 36–43

[3] H. Bercovici & V. Pata,

*Classical versus free domains of attractions*, Mathematical Research Letters

**2 **(1995),

[4] V. Pata,

*L´evy type characterization of stable laws for free random variables*, Transactions of the American Mathe-
matical Society

**347 **(1995), 2457–2472

[5] H. Bercovici & V. Pata,

*The law of large numbers for free identically distributed random variables*, The Annals of
Probability

**24 **(1996), 453–465

[6] V. Pata,

*Domains of partial attraction in noncommutative probability*, Paciﬁc Journal of Mathematics

**176 **(1996),

[7] V. Pata,

*The central limit theorem for free additive convolution*, Journal of Functional Analysis

**140 **(1996), 359–380

[8] V. Pata,

*A generalized weak law of large numbers for noncommuting random variables*, Indiana University Mathe-

matics Journal

**45 **(1996), 591–601

[9] F. Gazzola & V. Pata,

*A uniform attractor for a non-autonomous generalized Navier-Stokes equation*, Zeitschrift
ur Analysis und ihre Anwendungen

**16 **(1997), 435–449

[10] J.M. Lindsay & V. Pata,

*Some weak laws of large numbers in non-commutative probability*, Mathematische
Zeitschrift

**226 **(1997), 533–543

[11] V. Pata,

*A note on strong convergence of noncommuting random variables*, Bollettino della Unione Matematica
Italiana B

**11 **(1997), 141–159

[12] V. Pata,

*A remark on the decay of strongly continuous semigroups of bounded linear operators*, Rendiconti dell’Istituto
Lombardo di Scienze e Lettere A

**131 **(1997), 143–149

[13] C. Giorgi, A. Marzocchi & V. Pata,

*Asymptotic behavior of a semilinear problem in heat conduction with*
*memory*, Nonlinear Diﬀerential Equations and Applications

**5 **(1998), 333–354

[14] M. Grasselli & V. Pata,

*Longtime behavior of a homogenized model in visco-elastodynamics*, Discrete and Con-
tinuous Dynamical Systems

**4 **(1998), 339–358

[15] V. Pata,

*Sulle soluzioni a crescenza lenta di equazioni diﬀerenziali ordinarie *(in Italian), Rendiconti dell’Istituto
Lombardo di Scienze e Lettere A

**132 **(1998), 71–83

[16] V. Pata, G. Prouse & M.I. Vishik,

*Traveling waves of dissipative nonautonomous hyperbolic equations in a strip*,
Advances in Diﬀerential Equations

**3 **(1998), 249–270

[17] H. Bercovici & V. Pata,

*Stable laws and domains of attraction in free probability theory*, with an appendix by Ph.

Biane, Annals of Mathematics

**149 **(1999), 1023–1060

[18] S. Borini & V. Pata,

*Uniform attractors for a strongly damped wave equation with linear memory*, Asymptotic
Analysis

**20 **(1999), 263–277

[19] C. Giorgi, M. Grasselli & V. Pata,

*Uniform attractors for a phase-ﬁeld model with memory and quadratic*
*nonlinearity*, Indiana University Mathematics Journal

**48 **(1999), 1395–1445

[20] V. Pata & P. Ursino,

*Rearrangeable functions on the real line*, Real Analysis Exchange

**24 **(1998/99), 677–693

[21] H. Bercovici & V. Pata,

*A free analogue of Hinˇcin’s characterization of inﬁnite divisibility*, Proceedings of the
American Mathematical Society

**128 **(2000), 1011–1015

[22] H. Bercovici & V. Pata,

*Functions of regular variation and freely stable laws*, Annali di Matematica Pura ed
Applicata

**178 **(2000), 245–269

[23] H. Bercovici & V. Pata,

*Limit laws for products of free and independent random variables*, Studia Mathematica

**141 **(2000), 43–52

[24] A. Giarlotta, V. Pata & P. Ursino,

*Combinatorial and topological aspects of measure preserving homomorphisms*,
Topology Proceedings

**25 **(2000), 137–166

[25] C. Giorgi, A. Marzocchi & V. Pata,

*Uniform attractors for a non-autonomous semilinear heat equation with*
*memory*, Quarterly of Applied Mathematics

**58 **(2000), 661–683

[26] V. Pata,

*Attractors for a damped wave equation on IR*3

*with linear memory*, Mathematical Methods in the Applied
Sciences

**23 **(2000), 633–653

[27] V. Pata & E. Vuk,

*On the exponential stability of linear thermoelasticity*, Continuum Mechanics and Thermody-
namics

**12 **(2000), 121–130

[28] V. Pata, K.X. Zheng & A. Zucchi,

*On the reﬂexivity of operator algebras with isometric functional calculus*,
Journal of the London Mathematical Society

**61 **(2000), 604–616

[29] V. Pata & A. Zucchi,

*Reﬂexivity of C*0

*-operators over a multiply connected region*, Journal of Operator Theory

**43**
[30] V. Pata & A. Zucchi,

*Hyperinvariant subspaces of C*0

*-operators over a multiply connected region*, Integral Equations
and Operator Theory

**36 **(2000), 241–250

[31] V. Belleri & V. Pata,

*Attractors for semilinear strongly damped wave equations on *R3, Discrete and Continuous
Dynamical Systems

**7 **(2001), 719–735

[32] C. Giorgi, M. Grasselli & V. Pata,

*Well-posedness and longtime behavior of the phase-ﬁeld model with memory*
*in a history space setting*, Quarterly of Applied Mathematics

**59 **(2001), 701–736

noz Rivera & V. Pata,

*Global attractors for a semilinear hyperbolic equation in viscoelasticity*,
Journal of Mathematical Analysis and Applications

**260 **(2001), 83–99

[34] C. Giorgi, M.G. Naso & V. Pata,

*Exponential stability in linear heat conduction with memory: A semigroup*
*approach*, Communications in Applied Analysis

**5 **(2001), 121–134

[35] C. Giorgi & V. Pata,

*Stability of abstract linear thermoelastic systems with memory*, Mathematical Models &
Methods in Applied Sciences

**11 **(2001), 627–644

[36] C. Giorgi & V. Pata,

*Asymptotic behavior of a nonlinear hyperbolic heat equation with memory*, Nonlinear Diﬀer-
ential Equations and Applications

**8 **(2001), 157–171

[37] M. Grasselli & V. Pata,

*Upper semicontinuous attractor for a hyperbolic phase-ﬁeld model with memory*, Indiana
University Mathematics Journal

**50 **(2001), 1281–1308

[38] M. Grasselli & V. Pata,

*On the dissipativity of a hyperbolic phase-ﬁeld system with memory*, Nonlinear Analysis

**47 **(2001), 3157–3169

[39] V. Pata,

*Hyperbolic limit of parabolic semilinear heat equations with fading memory*, Zeitschrift f¨
ihre Anwendungen

**20 **(2001), 359–377

[40] V. Pata & C. Santina,

*Longtime behavior of semilinear reaction-diﬀusion equations on the whole space*, Rendiconti
del Seminario Matematico dell’Universit`
a di Padova

**105 **(2001), 233–251

[41] V. Pata & A. Zucchi,

*Attractors for a damped hyperbolic equation with linear memory*, Advances in Mathematical
Sciences and Applications

**11 **(2001), 505–529

[42] M. Grasselli & V. Pata,

*On the longterm behaviour of a parabolic phase-ﬁeld model with memory*, in “Diﬀerential
equations and control theory” (S. Aizicovici and N.H. Pavel, Eds.), pp.147–157, Lecture Notes in Pure and Appl.

Math. no.225, Marcel Dekker, New York (2002)
[43] M. Grasselli & V. Pata,

*Uniform attractors of nonautonomous systems with memory*, in “Evolution equations,
semigroups and functional analysis” (A. Lorenzi and B. Ruf, Eds.), pp.155–178, Progr. Nonlinear Diﬀerential Equa-tions Appl. no.50, Birkh¨
[44] M. Grasselli & V. Pata,

*Phase-ﬁeld system with memory eﬀects in the order parameter dynamics*, in “Mathe-
matical models and methods for smart materials” (M. Fabrizio, B. Lazzari and A. Morro, Eds.), pp.155–164, Ser. onAdv. Math. Sci. Appl. no.62, World Scientiﬁc, Singapore (2002)
[45] V. Pata & A. Villani,

*Some measurability and continuity properties of arbitrary real functions*, Le Matematiche

**57 **(2002), 63–82

[46] M. Grasselli & V. Pata,

*On the damped semilinear wave equation with critical exponent*, Dynamical systems and
diﬀerential equations (Wilmington, NC, 2002). Discrete and Continuous Dynamical Systems (suppl.) (2003), 351–358
[47] M. Grasselli & V. Pata,

*Existence of a universal attractor for a parabolic-hyperbolic phase-ﬁeld system*, Advances
in Mathematical Sciences and Applications

**13 **(2003), 443–459

[48] M. Grasselli, V. Pata & F.M. Vegni,

*Longterm dynamics of a conserved phase-ﬁeld system with memory*,
Asymptotic Analysis

**33 **(2003), 261–320

[49] S. Gatti, M. Grasselli & V. Pata,

*Exponential attractors for a phase-ﬁeld model with memory and quadratic*
*nonlinearity*, Indiana University Mathematics Journal

**53 **(2004), 719–754

[50] S. Gatti, M. Grasselli & V. Pata,

*Exponential attractors for a conserved phase-ﬁeld system with memory*, Physica
D

**189 **(2004), 31–48

[51] M. Grasselli & V. Pata,

*Existence of a universal attractor for a fully hyperbolic phase-ﬁeld system*, Journal of
Evolution Equations

**4 **(2004), 27–51

[52] M. Grasselli & V. Pata,

*Attractor for a conserved phase-ﬁeld system with hyperbolic heat conduction*, Mathematical
Methods in the Applied Sciences

**27 **(2004), 1917–1934

[53] M. Grasselli & V. Pata,

*Asymptotic behavior of a parabolic-hyperbolic system*, Communications on Pure and
Applied Analysis

**3 **(2004), 849–881

[54] M. Grasselli, V. Pata & G. Prouse,

*Longtime behavior of a viscoelastic Timoshenko beam*, Discrete and Con-
tinuous Dynamical Systems

**10 **(2004), 337–348

[55] M. Conti & V. Pata,

*Weakly dissipative semilinear equations of viscoelasticity*, Communications on Pure and
Applied Analysis

**4 **(2005), 705–720

[56] M. Conti, V. Pata & M. Squassina,

*Strongly damped wave equations on *R3

*with critical nonlinearities*, Commu-
nications in Applied Analysis

**9 **(2005), 161–176

[57] M. Conti, V. Pata & M. Squassina,

*Singular limit of dissipative hyperbolic equations with memory*, Discrete and
Continuous Dynamical Systems (suppl.) (2005), 200–208
[58] S. Gatti, C. Giorgi & V. Pata,

*Navier-Stokes limit of Jeﬀreys type ﬂows*, Physica D

**203 **(2005), 55–79

[59] S. Gatti, M. Grasselli, A. Miranville & V. Pata,

*Hyperbolic relaxation of the viscous Cahn-Hilliard equation*
*in 3-D*, Mathematical Models & Methods in Applied Sciences

**15 **(2005), 165–198

[60] S. Gatti, M. Grasselli, A. Miranville & V. Pata,

*On the hyperbolic relaxation of the one-dimensional Cahn-*
*Hilliard equation*, Journal of Mathematical Analysis and Applications

**312 **(2005), 230–247

[61] S. Gatti, M. Grasselli, A. Miranville & V. Pata,

*Memory relaxation of ﬁrst order evolution equations*,
Nonlinearity

**18 **(2005), 1859–1883

[62] S. Gatti, M. Grasselli & V. Pata,

*Lyapunov functionals for reaction-diﬀusion equations with memory*, Mathe-
matical Methods in the Applied Sciences

**28 **(2005), 1725–1735

[63] S. Gatti, M. Grasselli, V. Pata & M. Squassina,

*Robust exponential attractors for a family of nonconserved*
*phase-ﬁeld systems with memory*, Discrete and Continuous Dynamical Systems

**12 **(2005), 1019–1029

[64] C. Giorgi, M.G. Naso & V. Pata,

*Energy decay of electromagnetic systems with memory*, Mathematical Models
& Methods in Applied Sciences

**15 **(2005), 1489–1502

noz Rivera & V. Pata,

*On the energy decay of the linear thermoelastic plate with memory*,
Journal of Mathematical Analysis and Applications

**309 **(2005), 1–14

[66] M. Grasselli & V. Pata,

*Robust exponential attractors for a phase-ﬁeld system with memory*, Journal of Evolution
Equations

**4 **(2005), 465–483

[67] M. Grasselli & V. Pata,

*Attractors of phase-ﬁeld systems with memory*, in “Mathematical methods and models
in phase transitions” (A. Miranville, Ed.), pp.157–175, Nova Science Publishers, Inc., New York (2005)
[68] A. Miranville & V. Pata,

*On the semilinear wave equation with locally distributed nonlinear damping*, in “Math-
ematical approach to nonlinear phenomena; modelling, analysis and simulations”, pp.188–197, GAKUTO Internat.

Ser. Math. Sci. Appl. no.7, Gakk¯
[69] V. Pata & M. Squassina,

*On the strongly damped wave equation*, Communications in Mathematical Physics

**253**
[70] V.V. Chepyzhov, S. Gatti, M. Grasselli, A. Miranville & V. Pata,

*Trajectory and global attractors for*
*evolution equations with memory*, Applied Mathematics Letters

**19 **(2006), 87–96

[71] V.V. Chepyzhov, E. Mainini & V. Pata,

*Stability of abstract linear semigroups arising from heat conduction with*
*memory*, Asymptotic Analysis

**50 **(2006), 269–291

[72] V.V. Chepyzhov & V. Pata,

*Some remarks on stability of semigroups arising from linear viscoelasticity*, Asymptotic
Analysis

**46 **(2006), 251–273

[73] M. Conti, V. Pata & M. Squassina,

*Singular limit of diﬀerential systems with memory*, Indiana University
Mathematics Journal

**55 **(2006), 169–216

[74] S. Gatti, M. Grasselli, A. Miranville & V. Pata,

*A construction of a robust family of exponential attractors*,
Proceedings of the American Mathematical Society

**134 **(2006), 117–127

[75] S. Gatti, M. Grasselli, A. Miranville & V. Pata,

*Memory relaxation of the one-dimensional Cahn-Hilliard*
*equation*, in “Dissipative phase transitions” (P. Colli, N. Kenmochi and J. Sprekels, Eds.), pp.101–114, Ser. Adv.

Math. Appl. Sci. 71, World Sci. Publ., Hackensack, NJ (2006)
[76] S. Gatti & V. Pata,

*A one-dimensional wave equation with nonlinear damping*, Glasgow Mathematical Journal

**48**
[77] M. Grasselli & V. Pata,

*A reaction-diﬀusion equation with memory*, Discrete and Continuous Dynamical Systems

**15 **(2006), 1079–1088

[78] V. Pata,

*Exponential stability in linear viscoelasticity*, Quarterly of Applied Mathematics

**64 **(2006), 499–513

[79] V. Pata & S. Zelik,

*A remark on the damped wave equation*, Communications on Pure and Applied Analysis

**5**
[80] V. Pata & S. Zelik,

*Global and exponential attractors for 3-D wave equations with displacement dependent damping*,
Mathematical Methods in the Applied Sciences

**29 **(2006), 1291–1306

[81] V. Pata & S. Zelik,

*Smooth attractors for strongly damped wave equations*, Nonlinearity

**19 **(2006), 1495–1506

[82] S. D’Asero, V. Pata & P. Ursino,

*On a generalized notion of diﬀerentiability*, Real Analysis Exchange

**32**
[83] M. Conti, S. Gatti & V. Pata,

*Decay rates of Volterra equations on *R

*N *, Central European Journal of Mathematics

**5 **(2007), 720–732

[84] M. Grasselli, A. Miranville, V. Pata & S. Zelik,

*Well-posedness and long time behavior of a parabolic-*
*hyperbolic phase-ﬁeld system with singular potentials*, Mathematische Nachrichten

**280 **(2007), 1475–1509

[85] A. Miranville, V. Pata & S. Zelik,

*Exponential attractors for singularly perturbed damped wave equations: a*
*simple construction*, Asymptotic Analysis

**53 **(2007), 1–12

[86] V. Pata & S. Zelik,

*A result on the existence of global attractors for semigroups of closed operators*, Communications
on Pure and Applied Analysis

**6 **(2007), 481–486

[87] V. Pata & S. Zelik,

*Attractors and their regularity for 2-D wave equations with nonlinear damping*, Advances in
Mathematical Sciences and Applications

**17 **(2007), 225–237

[88] V.V. Chepyzhov, V. Pata, & M.I. Vishik,

*Averaging of nonautonomous damped wave equations with singularly*
*oscillating external forces*, Journal de Math´
ees

**90 **(2008), 469–491

[89] M. Conti, S. Gatti & V. Pata,

*Uniform decay properties of linear Volterra integro-diﬀerential equations*, Mathe-
matical Models & Methods in Applied Sciences

**18 **(2008), 21–45

[90] F. Di Plinio & V. Pata,

*Robust exponential attractors for the strongly damped wave equation with memory. I*,
Russian Journal of Mathematical Physics

**15 **(2008), 301–315

[91] F. Di Plinio, V. Pata & S. Zelik,

*On the strongly damped wave equation with memory*, Indiana University
Mathematics Journal

**57 **(2008), 757–780

[92] S. Gatti, A. Miranville, V. Pata & S. Zelik,

*Attractors for semilinear equations of viscoelasticity with very low*
*dissipation*, Rocky Mountain Journal of Mathematics

**38 **(2008), 1117–1138

[93] C. Giorgi, V. Pata & E. Vuk,

*On the extensible viscoelastic beam*, Nonlinearity

**21 **(2008), 713–733

[94] M.I. Vishik, V. Pata & V.V. Chepyzhov,

*Time averaging of global attractors for nonautonomous wave equations*
*with singularly oscillating external forces *(in Russian), Doklady Akademii Nauk

**422 **(2008), 164–168

[95] V.V. Chepyzhov, V. Pata & M.I. Vishik,

*Averaging of 2D Navier-Stokes equations with singularly oscillating*
*forces*, Nonlinearity

**22 **(2009), 351–370

[96] M. Conti & V. Pata,

*On the regularity of global attractors*, Discrete and Continuous Dynamical Systems

**25 **(2009),

[97] F. Di Plinio & V. Pata,

*Robust exponential attractors for the strongly damped wave equation with memory. II*,
Russian Journal of Mathematical Physics

**16 **(2009), 61–73

[98] S. Gatti, V. Pata & S. Zelik,

*A Gronwall-type lemma with parameter and dissipative estimates for PDEs*, Non-
linear Analysis

**70 **(2009), 2337–2343

[99] C. Giorgi, M.G. Naso, V. Pata & M. Potomkin

*Global attractors for the extensible thermoelastic beam system*,
Journal of Diﬀerential Equations

**246 **(2009), 3496–3517

[100] V. Pata,

*Gradient systems of closed operators*, Central European Journal of Mathematics

**7 **(2009), 487–492

[101] V. Pata,

*Stability and exponential stability in linear viscoelasticity*, Milan Journal of Mathematics

**77 **(2009), 333–360

[102] M. Conti, S. Gatti, M. Grasselli & V. Pata,

*Two-dimensional reaction-diﬀusion equations with memory*,
Quarterly of Applied Mathematics

**68 **(2010), 607-643

[103] M. Conti, E.M. Marchini & V. Pata,

*Semilinear wave equations of viscoelasticity in the minimal state framework*,
Discrete and Continuous Dynamical Systems

**27 **(2010), 1535–1552

[104] M. Coti Zelati, C. Giorgi & V. Pata,

*Steady states of the hinged extensible beam with external load*, Mathematical
Models & Methods in Applied Sciences

**20 **(2010), 43–58

[105] M. Coti Zelati, V. Pata & R. Quintanilla,

*Regular global attractors of type III thermoelastic extensible beams*,
Chinese Annals of Mathematics - Series B

**31 **(2010), 619–630

[106] M. Fabrizio, C. Giorgi & V. Pata,

*A new approach to equations with memory*, Archive for Rational Mechanics
and Analysis

**198 **(2010), 189–232

[107] S. Gatti, A. Miranville, V. Pata & S. Zelik,

*Continuous families of exponential attractors for singularly*
*perturbed equations with memory*, Proceedings of the Royal Society of Edinburgh: Section A Mathematics

**140A**

(2010), 329–366

[108] V. Pata,

*Exponential stability in linear viscoelasticity with almost ﬂat memory kernels*, Communications on Pure
and Applied Analysis

**9 **(2010), 721–730

[109] V. Pata & R. Quintanilla,

*On the decay of solutions in nonsimple elastic solids with memory*, Journal of Mathe-
matical Analysis and Applications

**363 **(2010), 19–28

[110] M.D. Chekroun, F. Di Plinio, N.E. Glatt-Holtz & V. Pata,

*Asymptotics of the Coleman-Gurtin model*,
Discrete and Continuous Dynamical Systems - Series S

**4 **(2011), 351–369

[111] F. Dell’Oro & V. Pata,

*Long-term analysis of strongly damped nonlinear wave equations*, Nonlinearity

**24 **(2011),

[112] E. Laeng & V. Pata,

*A convergence-divergence test for series of nonnegative terms*, Expositiones Mathematicae

**29 **(2011), 420–424

[113] V. Pata,

*Uniform estimates of Gronwall type*, Journal of Mathematical Analysis and Applications

**373 **(2011),

[114] V. Pata,

*A ﬁxed point theorem in metric spaces*, Journal of Fixed Point Theory and Applications

**10 **(2011), 299–305

[115] V.V. Chepyzhov, M. Conti & V. Pata,

*A minimal approach to the theory of global attractors*, Discrete and
Continuous Dynamical Systems

**32 **(2012), 2079–2088

[116] M. Conti, E.M. Marchini & V. Pata,

*Approximating inﬁnite delay with ﬁnite delay*, Communications in Con-
temporary Mathematics

**14 **(2012), no.1250012

[117] F. Dell’Oro & V. Pata,

*Strongly damped wave equations with critical nonlinearities*, Nonlinear Analysis

**75 **(2012),

[118] F. Dell’Oro & V. Pata,

*Memory relaxation of type III thermoelastic extensible beams and Berger plates*, Evolution
Equations and Control Theory

**1 **(2012), 251–270

[119] V. Pata,

*On the regularity of solutions to the Navier-Stokes equations*, Communications on Pure and Applied Analysis

**11 **(2012), 747–761

[120] M. Conti, E.M. Marchini & V. Pata,

*Exponential stability for a class of linear hyperbolic equations with hereditary*
*memory*, Discrete and Continuous Dynamical Systems - Series B

**18 **(2013), 1555–1565

[121] M. Coti Zelati, F. Dell’Oro & V. Pata,

*Energy decay of type III linear thermoelastic plates with memory*,
Journal of Mathematical Analysis and Applications

**401 **(2013), 357–366

[122] V.V. Chepyzhov, M. Conti & V. Pata,

*Totally dissipative dynamical processes and their uniform global attractors*,
Communications on Pure and Applied Analysis
[123] M. Conti, E.M. Marchini & V. Pata,

*Reaction-diﬀusion with memory in the minimal state framework*, Transac-
tions of the American Mathematical Society
[124] M. Conti, V. Pata & R. Temam,

*Attractors for processes on time-dependent spaces. Applications to wave equations*,
[125] C. Giorgi, D. Grandi & V. Pata,

*On the Green-Naghdi type III heat conduction model*, Discrete and Continuous

**Preprints**
[126] M. Conti, F. Dell’Oro & V. Pata,

*Timoshenko systems with fading memory*[127] M. Conti, E.M. Marchini & V. Pata,

*Nonclassical diﬀusion with memory*[128] M. Conti & V. Pata,

*Asymptotic structure of the attractor for processes on time-dependent spaces*[129] F. Dell’Oro, J.E. Mu˜
noz Rivera & V. Pata,

*Exponential and polynomial stability of linear thermoelastic plates*
[130] F. Dell’Oro & V. Pata,

*On the stability of Timoshenko systems with Gurtin-Pipkin thermal law*
Source: http://www.mate.polimi.it/viste/pagina_personale/pp/121/Lavori.pdf

The emergency it represents in the clinical setting of : Hypertension Author : - Dr. Edward Tsang (registered Chinese Herbalist & Acupuncturist ) Wu Zhu Metaphysician Hypertension is quite common and popular for modern society nowadays due to people’s daily diet. Patients with the symptom of diastolic blood pressure over 120 mmHg is defined as hypertensive crisis (Cameron et al

DEFINITIONS Concentration of lipid in the blood of a fasted (>12 h) patient that exceeds the upper range of normal for that species; includes both hypercholesterolemia and hypertriglyceridemia Lipemic serum or plasma separated from blood that contains an excess concentration of Lactescence opaque, milklike appearance of serum or plasma that contains an even higher concentrat